PERL scripting

Perl is a scripting language
It is compiled before each run
To tell UNIX that following is perl script write #!/usr/bin/perl at the very first line of perl script

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k 3k %k 3k 3k 5k %k %k 3k 5k 5k 3k 3k 3k >k 5k 3k %k sk %k >k 5k %k %k %k %k kok k Comments in Perl

ok K oK ok ok 3k o o K ok ok ok 3k ok o oK ok ok 3k ok ok ok oK ok 3k ok o K oK ok ok ok ok ok oK oK ok ok ok ok K Kok sk ok ok kK Kk

Single line comment is written starting with #

Commands starts with first non space character and ends with ;
subroutine is written like sub subname{command;}

call subroutine by &subname;

pass arugments like &subname(@data);

inside subroutine receive arguments like

sub subname{

@x = @data;
commands;
}

sub subname{
(Svarl,Svar2,Svar3) = @data;
commands;

}

sub subname{
Icoal(Svarl,Svar2,5var3) = @data;
commands;

}

3k 3k 3k 3k 3k 3k 3k %k 3k 3k sk 5k sk 3k 3k 3k sk 5k 3k 3k 3k sk 3k 3k 3k >k 5k sk sk sk sk ok 5k k %k k %k kok ok Quotes in Perl

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3k 3k %k >k %k >k 5k 3k >k >k >k 5k 5k 3k 3k %k >k 5%k 3k 5k >k %k %k >k 5k %k %k %k K%k %k %k kk*k*k

single quote is written as "
double quote is written as
guote for execution is ™

quote which contains / is written as gq!<quote with />!

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3k 3k 5k %k %k %k 3%k 3k 3k >k %k >k 5k 3k 3k %k %k %k 5k 3k %k %k k k ok k Variables in Perl

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k %k 3k 3k %k >k %k >k 5k 3k >k >k >k 5k 5k 3k 3k %k >k 5k 5k 5k 3k %k %k >k 5k %k %k %k k%k %k %k kkkk

no data type for variable, perl switches data type as required

SvariableName = value; is used to define a variable with value ex. $x =10; Sy="XYZ";
@variable for array variable, ex. @x = (10, 20, 30);

individual element of an array accessed as Sx[2]

%variable for associative array variable, ex. %x = ('name’','XYZ', 'age',30, 'key','value'); or %x =
(name=>'XYZ', age=>30, key=>value);

individual element of an associative array accessed as $x{"key"} returns value

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k %k %k 3k 3k >k 3k 3k 3k %k %k %k 3k 3k 3k 3k 3%k %k %k >k 3k >k 3k 3k 3k %k %k %k >k >k 3k 3k 5k 3k %k %k 3k 3k k k

Svar = value; # normal assighment
Svar .= stringValue; # string appending
Svar += value; # add value to previous value of Svar, also called as short hand assignment

PERL scripting

**Conqpa”gonin Peﬂ

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k 3k 3k 5k %k 3k 3k 3k 5k 3k sk sk sk 3k 5k 3k 3k sk sk 3k 3k 3k 3k sk sk >k >k 5k 3k %k %k 5k 5k %k %k k k ok

to compare numbers == I=> < <=>=
to compare strings eq (for equal?) ne (for not equal?)

**Iogmaloperatorsh1Per

ok K ok oK ok 3k o o K ok ok ok 3k ok ok oK ok ok 3k ok ok ok oK ok sk ok o ok oK ok ok ok ok o oK ok ok ok ok ok K Kok sk ok ok kK Kk

&& (AND), || (OR), ! (NOT)
instead of writing

if ISvar

one can write

unless Svar

**ifanlemessinPer

3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k sk %k %k 3k 3k sk sk ok sk 3k ok sk sk sk 3k ok 5k 3k sk sk 3k ok sk sk sk sk sk ok sk sk sk sk kosk sk sk sk k ok k

for if-else ladder
if(condition){
command;
}elsif(condition){
command;
lelse{
command;

for single line command with condition
command if condition;

opposite of if
unless(condition){
command;
lelse{
command;

for single line command with unless condition
command unless condition;

**Ioopmgin Peﬂ

3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k 3k 3k 3k %k %k %k >k 3k 3k 3k 5%k %k %k >k 3k >k 3k 5%k 3k %k %k %k >k 3k 3k 3k 3%k 3k %k %k %k %k k k

while(condition){
command;

Go prematurely to the next iteration
while(condition){

command;

next if condition;

PERL scripting

command;

}

Prematureley abort the loop with last
while(condition){

command;

last if condition;

}

until (just the opposite of while)
until(condition){
command;

}

until(condition){
command;
next if condition;
command;

}

until(condition){
command;
last if condition;

}

Iterate over @data and have each value in §_
for(@data){

print S_,"\n";
}

Get each value into Sinfo iteratively
for Sinfo (@data){

print Sinfo,"\n";
}

Iterate over a range of numbers
for Snum (1..100){

next if Snum % 2;

print Snum,"\n";

}

Eternal loop with (;;)
for (;;{

Snum++;

last if Snum > 100;
}

PERL scripting

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k %k %k %k >k 5k %k %k %k %k kok k SubStitututionS in Per-l

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 5k %k 3k 3k 3k 5k 3k 3k sk 3k 5k 5k 3k sk 3k 3k 5k 5k 5k 3k sk sk ok sk %k sk sk kosk sk sk sk k ok k

Svar =~s/patten/replace;
(SnewVar=SoldVar) =~s/pattern/replace;

>k >k 3k 3k 3k 3k 3k %k %k 3k 3k 3k k %k %k 3k 3k %k %k %k %k 3k >k >k %k >k 5k 3k 3k %k %k %k 5k %k %k %k *k k ok k print in Perl

ok ok oK oK ok 3k o o K ok ok ok ok ok o oK ok ok 3k ok ok ok oK ok sk ok o K oK ok ok ok ok ok oK oK ok ok ok ok K Kok sk ok ok kK Kk

print Svar, "\n";
printf("%s %d",Sstr, Svar);

output in afile

open(OUT, "<fileName>") | | die "error message";
print OUT Svar;

close OUT;

print a file if it is not empty
open(IN,"<file") | | die "Cannot open file\n";
if(eof(IN)){

print "File is empty\n";
lelse{

while(<IN>){

print;

}

}

close IN;

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3k 3k 3k 3k %k %k 3k 3k %k %k %k >k 5k 3k 3k %k %k %k 5k 3k %k %k k k ok k read in Perl

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k >k 3k 3k 3k >k >k 5k 5k 3k 3k %k >k 3k 5k 5k 3k %k %k >k 5k %k %k %k k %k %k %k kkkk

chomp(Svar=<STDIN>); # removes new line character from last and puts in Svar

to read from file

oepn(IN, "<fileName>") | | die "error message";
while(<IN>){

commands;

}

close IN;

to read a file into array

open(IN, "<fileName>") | | die "error message";
@arr = <IN>;

close IN;

Process Files mentioned on the Commandline
while(<>){
Sfile = SARGV;
print $file,"\t",$_;
open(IN,"<Sfile") or warn "Cannot open Sfile\n";
....commands for this file....

PERL scripting

close(IN);

}

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k 3k %k 3k 3k 5k %k %k 3k 5k 5k 3k 3k 3k >k 5k 3k %k sk %k >k 5k %k %k %k %k kok k bUI|t in functions in Perl
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k 3k 3k 3k %k 3k 3k 3k 5k 3k sk sk 3k 5k 5k 3k 3k 3k 3k 5k 5k sk 3k sk sk ok sk %k sk sk kosk sk sk sk kkok

Get all upper case with: Sname = uc(Sname);
Get only first letter uppercase: Sname = ucfirst(Sname);

Get all lowercase: Shame = Ic(Shame);
Get only first letter lowercase: Sname = Icfirst(Shame);
Get the length of a string: Ssize = length(Sstring);

Extract 5-th to 10-th characters from a string: Spart = substr(Swhole,4,5);
Remove line ending: chomp(Svar);

Remove last character: chop(Svar);

Crypt a string: Scode = crypt(Sword,S$salt);

Execute a string as perl code: eval Svar;

Show position of substring in string: Spos = index(Sstring,Ssubstring);
Show position of last substring in string: Spos = rindex(Sstring,Ssubstring);
Quote all metacharachters: Squote = quotemeta(Sstring);

Array Functions
Get expressions for which a command returned true: @found = grep(/[Jjlohn/,@users);
Applay a command to each element of an array: @new = map(lc($S_), @start);

Put all array elements into a single string: Sstring = join(' ',@arr);

Split a string and make an array out of it: @data = split(/&/,SENV{'QUERY_STRING'};
Sort an array: sort(@salery);

Reverse an array: reverse(@salery);

Get the keys of a hash(associative array): keys(%hash);

Get the values of a hash: values(%hash);

Get key and value of a hash iteratively: each(%hash);

Delete an array:@arr = ();

Delete an element of a hash: delete Shash{Skey};

Check for a hash key: if(exists Shash{Skey}){;}

Check wether a hash has elements: scalar %hash;

Cut of last element of an array and return it: Slast = pop(@1Q_list);
Cut of first element of an array and return it: Sfirst = shift(@topguy);
Append an array element at the end: push(@waiting,Sname);
Prepend an array element to the front: unshift(@nowait,Sname);
Remove first 2 chars an replace them with Svar: splice(@arr,0,2,Svar);
Get the number of elements of an array: scalar @arr;

Get the last index of an array: Slastindex = S#arr;

File Functions

Open a file forinput: open(IN,"</path/file") || die "Cannot open file\n";
Open a file for output: open(OUT,">/path/file") | | die "Cannot open file\n";
Open for appending: open(OUT,">>5file") | | &myerr("Couldn't open $file");
Close afile: close OUT;

Set permissions: chmod 0755, Sfile;

Delete a file: unlink $file;

PERL scripting

Rename a file: rename Sfile, Snewname;

Make a hard link: link Sexisting_file, Slink_name;
Make a symbolic link: symlink Sexisting_file, Slink_name;
Make a directory: mkdir Sdirname, 0755;

Delete a directory: rmdir Sdirname;

Reduce a file's size: truncate Sfile, Ssize;

Change owner- and group-ID: chown Suid, $gid;
Find the real file of a symlink: S$file = readlink Slinkfile;
Get all the file infos: @stat = stat Sfile;

Conversions Functions

Number to character: chr Snum;
Charachter to number: ord(Schar);
Hex to decimal: hex(0Ox4F);

Octal to decimal: oct(0700);

Get localtime from time: localtime(time);

Get greenwich meantime: gmtime(time);

Pack variables into string: Sstring = pack("C4",split(/\./,SIP));
Unpack the above string: @arr = unpack("C4",Sstring);
Addition: +

Subtraction: -
Multiplication: *
Division: /

Rise to the power of: **
Rise e to the pwoer of: exp()
Modulus: %

Square root: sqrt()
Absolut value: abs()
Tangens: atan2()

Sinus: sin()

Cosine: cos()

Random number: rand()

Command line Switches

Show the version number of perl: perl -v;

Check a new program without runing it: perl -wc <file>;

Have an editing command on the command line: perl -e ‘command’;
Automatically print while precessing lines: perl -pe '‘command’ <file>;
Remove line endings and add them again: perl -lpe 'command' <file>;
Edit a file in place: perl -i -pe '‘command’ <file>;

Autosplit the lines while editing:perl -a -e 'print if SF[3] =~ /ETH/;' <file>;
Have an input loop without printing: perl -ne 'command' <file>;

